Table 2. Bond distances (\AA^{\AA}) and angles (${ }^{\circ}$) for xanthone with e.s.d.'s in parentheses

$\mathrm{C}(11)-\mathrm{C}(12)$	1.39 (1)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.40$ (1)	
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 35$ (2)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$.	$1.35 \text { (2) }$
$\mathrm{C}(13)-\mathrm{C}(14)$	1.37 (2)	$\mathrm{C}(23)-\mathrm{C}(24) \quad 1.37$	1.37 (2)
$\mathrm{C}(14)-\mathrm{C}(15) \quad 1$	1.38 (2)	$\mathrm{C}(24)-\mathrm{C}(25) \quad 1.3$	$1 \cdot 37$ (2)
$\mathrm{C}(15)-\mathrm{C}(16) \quad 1$	1.42 (1)	$\mathrm{C}(25)-\mathrm{C}(26) \quad 1$.	1.41 (1)
$\mathrm{C}(16)-\mathrm{C}(11)$	$1 \cdot 39$ (1)	$\mathrm{C}(26)-\mathrm{C}(21) \quad 1$.	1.38 (1)
$\mathrm{O}(1)-\mathrm{C}(11) \quad 1$	1.36 (1)	$\mathrm{O}(1)-\mathrm{C}(21) \quad 1.3$	7 (1)
$\mathrm{C}(7)-\mathrm{C}(16) \quad 1$	1.45 (1)	$\mathrm{C}(7)-\mathrm{C}(26)$	
$\mathrm{C}(7)-\mathrm{O}(2)$	2 (1)		1.48 (1)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118.1 (9)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	118.9 (9)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$124 \cdot 0$ (10)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$121 \cdot 4$ (10)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	118.4 (10)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$120 \cdot 8$ (10)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120 \cdot 3$ (9)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	119.2 (9)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	118.4 (8)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	118.7 (8)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	$120 \cdot 7$ (9)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	121.0 (9)
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$116 \cdot 3$ (8)	$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	115.6 (8)
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	123.0 (8)	$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	$123 \cdot 3$ (8)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(7)$	119.3 (8)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(7)$	118.6 (8)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(7)$	$122 \cdot 3$ (8)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(7)$	122.7 (8)
$\mathrm{C}(16)-\mathrm{C}(7)-\mathrm{O}(2)$	123.4 (8)	$\mathrm{C}(26)-\mathrm{C}(7)-\mathrm{O}(2)$	120.5 (8)
$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(21)$	119.4 (6)	$\mathrm{C}(16)-\mathrm{C}(7)-\mathrm{C}(26)$	116.2 (7)

to that in the gas phase (Iijima, Misu, Ohnishi \& Onuma, 1989), and we conclude that the p_{z} electrons of atoms $\mathrm{O}(1)$ and $\mathrm{C}(7)$ are used for conjugation in
the central ring and this conjugation makes the skeleton of the molecule planar.

The benzene rings are apparently not regular hexagons in shape. This distortion, however, appears to be symmetric, and the whole molecule has approximate $C_{2 v}$ symmetry.

References

Biswas, S. C. \& Sen, R. K. (1982). Indian J. Pure Appl. Phys. 20, 414-415.
Iıлma, K., Misu, T., Ohnishi, S. \& Onuma, S. (1989). J. Mol. Struct. 213, 263-269.
IıлмA, T. (1972). Bull. Chem. Soc. Jpn, 45, 3526-3530.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
SaKURai, T. \& Kobayashi, K. (1979). Rikagatu Kenkyusho Hokoku, 55, 69-77.
Tamagawa, K., Takemura, M., Konaka, S. \& Kimura, M. (1984). J. Mol. Struct. 125, 131-142.

Acta Cryst. (1990). C46, 1727-1730

Structure of 2,4,4,6-Tetraphenyl-4H-pyran

By Jaroslav Vojtěchovský and Jindrích Hašek
Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, Heyrovský sq. 2, 16206 Prague 6, Czechoslovakia

(Received 25 September 1989; accepted 5 January 1990)

Abstract

C}_{29} \mathrm{H}_{22} \mathrm{O}, M_{r}=386 \cdot 49\), monoclinic, $P 2_{1} / c, a$ $=12 \cdot 128(5), \quad b=12 \cdot 372(5), c=14 \cdot 599$ (5) $\AA, \quad \beta=$ $105.57(3)^{\circ}, \quad V=2110(1) \AA^{3}, \quad Z=4, \quad D_{m}=1.21(1)$, $D_{x}=1.217(1) \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=$ $0.561 \mathrm{~mm}^{-1}, F(000)=816, T=298 \mathrm{~K}, R=0.039$ for 2729 unique observed reflections. The 4 H -pyran ring is roughly planar with the phenyl rings substituted on the $\mathrm{C}\left(s p^{2}\right)$ atoms C 2 and C 6 . The ring shows a slightly distorted boat conformation with the boat angles $4.3(1)$ and $7.7(1)^{\circ}$ on $\mathrm{C}\left(s p^{2}\right)$ and O , respectively. The observed conformation is compared with three other structures containing similar pyran rings.

Introduction. The structure of 2,4,4,6-tetraphenyl$4 H$-pyran has been determined by the X-ray method because by analogy with three similar structures which were available from the Cambridge Structural Database (Allen et al., 1979; release 1988), neither
the conformation of the $4 H$-pyran moiety nor the orientation of its substituents could be predicted unambiguously. The photochromic behaviour is similar to that of differently substituted 1,4 -dihydropyridines observed by Iwasaki, Watanabe \& Maeda (1987). The molecular geometry is considered to be significant for the explanation of photochromic properties.

Experimental. 2,4,4,6-Tetraphenyl-4 H -pyran crystallized as colourless, well developed crystals from an oxygen-free benzene solution. The crystals turn blue in light and X-rays, but no changes in diffracted intensities were observed. The density was determined by flotation in an aqueous KBr solution.
The crystal used was a prism with dimensions 0.6 $\times 0.3 \times 0.3 \mathrm{~mm}$. Weissenberg photographs confirmed the good quality of the crystal and indicated © 1990 International Union of Crystallography

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors

	$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Cl	0.2724 (1)	0.0456 (1)	0.9590 (1)	0.0415 (5)
C2	$0 \cdot 1951$ (1)	-0.0319 (1)	0.9327 (1)	0.0459 (6)
C3	$0 \cdot 2040$ (1)	-0.1244 (1)	0.8673 (1)	0.0438 (5)
C4	0.3027 (1)	-0.0997 (1)	0.8258 (1)	0.0476 (5)
C5	0.3758 (1)	-0.0192 (1)	0.8540 (1)	0.0425 (5)
C6	0.4754 (1)	0.0073 (1)	0.8178 (1)	0.0448 (5)
C7	0.5421 (1)	0.0986 (2)	0.8505 (1)	0.0552 (6)
C8	0.6370 (2)	$0 \cdot 1220$ (2)	0.8183 (1)	0.0658 (8)
C9	0.6664 (2)	0.0563 (2)	0.7530 (1)	0.0676 (8)
C10	0.6013 (2)	-0.0343 (2)	0.7195 (1)	0.0664 (8)
C11	$0 \cdot 5074$ (2)	-0.0591 (2)	0.7519 (1)	0.0549 (6)
C12	0.2720 (1)	$0 \cdot 1337$ (1)	1.0276 (1)	0.0441 (6)
C13	0.3553 (1)	0.2141 (1)	1.0442 (1)	0.0552 (6)
C14	0.3568 (2)	$0 \cdot 2956$ (2)	1.1097 (1)	0.0640 (7)
C15	0.2751 (2)	0.2989 (2)	1.1591 (1)	0.0663 (7)
C16	$0 \cdot 1916$ (2)	0.2204 (2)	1.1431 (1)	0.0659 (8)
C17	$0 \cdot 1902$ (2)	$0 \cdot 1383$ (2)	1.0785 (1)	0.0567 (7)
C18	0.2244 (1)	-0.2285 (1)	0.9278 (1)	0.0440 (5)
C19	$0 \cdot 1412$ (2)	-0.2653 (1)	0.9702 (1)	0.0532 (6)
C20	$0 \cdot 1592$ (2)	-0.3556 (2)	1.0276 (1)	0.0652 (8)
C21	$0 \cdot 2613$ (2)	-0.4115 (2)	1.0444 (1)	0.0686 (7)
C22	0.3437 (2)	-0.3767 (2)	1.0028 (1)	0.0701 (8)
C23	0.3259 (1)	-0.2859 (2)	0.9452 (1)	0.0561 (6)
C24	0.0951 (1)	-0.1337 (1)	0.7839 (1)	0.0436 (5)
C25	0.0604 (1)	-0.2316 (1)	0.7392 (1)	0.0525 (6)
C26	-0.0348 (2)	-0.2378 (2)	0.6610 (1)	0.0626 (7)
C27	-0.0965 (2)	-0.1468 (2)	0.6262 (1)	0.0649 (8)
C28	-0.0631 (2)	-0.0491 (2)	0.6694 (1)	0.0702 (8)
C29	0.0329 (2)	-0.0426 (2)	0.7472 (1)	0.0609 (7)
030	$0 \cdot 3666$ (1)	0.0524 (1)	0.9237 (1)	0.0574 (4)

space group $P 2_{1} / c$. The lattice parameters were refined from 15 centered reflections ($12<2 \theta<27^{\circ}$). A total of 3144 unique and 2729 observed reflections [$I>1.96 \sigma(I)$] were collected by $\theta-2 \theta$ scan, using a Syntex $P 2_{1}$ diffractometer. Intensities were measured up to $2 \theta=120^{\circ}$ with $h=-13 / 13, k=0 / 13, l=0 / 16$; only a unique data set was collected. Three standard reflections $(200,132,202)$ showed no significant fluctuations during the measurement.

The phase problem was solved by MULTAN87 (Debaerdemaeker, Germain, Main, Tate \& Woolfson, 1987) and refined by $S H E L X 76$ (Sheldrick, 1976). Scattering factors were taken from International Tables for X-ray Crystallography (1974). The atorilic coordinates and the anisotropic temperature parameters were freely refined for all the non-H atoms; the H atoms were refined isotropically. The function minimized was $\sum\left(w|\Delta F|^{2}\right)$, where $w=$ $\left[\sigma^{2}\left(F_{o}\right)+0.0009\left|F_{o}\right|^{2}\right]^{-1}$. The refinement of 358 parameters in full-matrix mode was finished when all shifts fell below $0 \cdot 15$ of their e.s.d.'s. An empirical isotropic extinction factor was refined to $1.14 \times$ 10^{-6}. Final $R=0.039, w R=0.057, S=1.509$. Maximum and minimum peaks in the final difference map were 0.13 and -0.18 e \AA^{-3}. No significant correlations among refined parameters were observed. The geometry was calculated with PARST (Nardelli, 1983). The final positional parameters and equivalent
isotropic thermal parameters for non-H atoms are listed in Table 1.*

Discussion. The molecular structure of 2,4,4,6-tetra-phenyl-4H-pyran with the atom numbering is shown in Fig. 1. Bond distances and angles are listed in Table 2 and selected torsion angles are listed in Table 3.

The geometries of the $4 H$-pyran rings in four compounds are compared in Table 3 [(I) title compound, (II) 2-(3,3,5',5',6,6-hexamethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroxanthen-9-spirocyclo-hex-2'-en-3'-yl)-3-hydroxy-5,5-dimethylcyclohex-2enone (Declercq, Germain, van Meerssche, Greenhill, Chaaban \& de Kimpe, 1981), (III) 2,6-dimethyl-4-phenyl-4H-pyran-3,5-dicarbonitrile (Florencio \& Garcia-Blanco, 1987) and (IV) 2-amino-7,7-dimethyl-4-(3-fluorophenyl)-5-oxo-3-ethoxycarbonyl-5,6,7,8-tetrahydro-4H-benzo[b]pyran (Sharanina et al., 1986)].

(I)

(II)

(III)

(IV)

[^0]

Fig. 1. Molecular structure with the atom numbering.

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

C2-C3	1.324 (2)	C2-C21	1-481 (2)
C2-0	1.376 (2)	C3-C4	1.513 (2)
C4-C5	1.511 (2)	C4-C411	1.544 (2)
C4-C421	1.542 (2)	C5-C6	1.323 (2)
C6-C61	1.479 (2)	C6-0	1.376 (2)
C21-C22	1.392 (2)	C21-C26	1.391 (3)
C22-C23	1.386 (3)	C23-C24	1.374 (3)
C24-C25	1.377 (4)	C25-C26	1.383 (3)
C61-C62	1.397 (3)	C61-C66	1.397 (3)
C62-C63	1.386 (3)	C63-C64	1.371 (3)
C64-C65	1.383 (3)	C65-C66	1.380 (4)
C411-C412	1.394 (3)	C411-C416	1.384 (2)
C412-C413	1.378 (3)	C413-C414	1.382 (3)
C414-C415	1.371 (3)	C415-C416	1.385 (3)
C421-C422	$1 \cdot 387$ (2)	C421-C426	1.382 (3)
C422-C423	1.391 (3)	C423-C424	1.372 (3)
C424-C425	1.373 (3)	C425-C426	1.394 (3)
C21-C2-O	111.2 (2)	C61-C66-C65	120.9 (2)
C3-C2-C21	126.8 (2)	$\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 22$	$120 \cdot 6$ (2)
C3-C4-C421	111.3 (2)	C22-C21-C26	117.8 (2)
C3-C4-C411	$107 \cdot 3$ (1)	C21-C22-C23	121.0 (2)
C411-C4-C421	111.2 (2)	C21-C26-C25	121.0 (2)
C5-C4-C421	107.5 (1)	C4-C411-C412	$120 \cdot 2$ (2)
C5-C4-C411	112.1 (2)	C412-C411-C416	117.7 (2)
C5-C6-C61	126.8 (2)	C411-C412-C413	121.3(3)
C61-C6-0	111.0 (2)	C411-C416-C415	-120.9 (2)
C6-C61-C62	120.7 (2)	C4-C421-C422	121.6 (2)
C62-C61-C66	117.9 (2)	C422-C421-C426	117.7 (2)
C61-C62-C63	120.7 (2)	C421-C422-C423	121.0 (2)

Table 3. Comparison of the geometry $\left(\AA,{ }^{\circ}\right)$ of $4 H-$ pyrans with e.s.d.'s in parentheses

	(I)	(II)	(III)	(IV)
C2-C3	1.324 (2)	1.335 (7)	$1 \cdot 329$ (6)	1.359 (4)
C5-C6	1.323 (2)	1.322 (7)	$1 \cdot 329$ (6)	1.337 (3)
$\mathrm{O}-\mathrm{C} 2$	1.376 (2)	1.385 (6)	1.382 (5)	1.371 (3)
$\mathrm{C} 6-\mathrm{O}$	1.376 (2)	1.378 (6)	$1 \cdot 391$ (5)	1.376 (3)
C3-C4	1.513 (2)	1.547 (7)	1.518 (6)	1.518 (4)
C4-C5	1.510 (2)	1.539 (7)	1.512 (5)	1.505 (3)
C3-C4-C5	107.4 (2)	105.4 (4)	107.3 (3)	110.1 (2)
C2-C3-C4	124.5 (2)	$120 \cdot 5$ (5)	124.5 (4)	120.7 (2)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	124.3 (2)	$120 \cdot 6$ (5)	125.8 (4)	121.7 (2)
C5-C6-0	122.3 (2)	121.9 (5)	120.7 (3)	122.8 (2)
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 3$	122.0 (2)	$120 \cdot 9$ (5)	122.0 (4)	$122 \cdot 6$ (2)
$\mathrm{C} 6-\mathrm{O}-\mathrm{C} 2$	118.5 (2)	117.4 (4)	119.3 (3)	118.8 (2)
C4-C5-C6-O	-1.6(3)	7.0 (8)	-3.1 (6)	4.5 (5)
$\mathrm{O}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	4.1 (3)	-8.0 (8)	0.8 (7)	-5.4 (6)
$\mathrm{C} 2-\mathrm{O}-\mathrm{C} 6-\mathrm{C} 5$	-5.9 (3)	22.9 (8)	-2.7(5)	9.8 (5)
$\mathrm{C} 6-\mathrm{O}-\mathrm{C} 2-\mathrm{C} 3$	4.7 (3)	-22.2 (9)	3.8 (6)	-9.3 (5)
C2-C3-C4-C5	-10.0 (3)	32.7 (8)	-5.4 (6)	17.5 (6)
C3-C4-C5-C6	8.8 (3)	-32.3 (9)	6.6 (5)	-17.2 (6)
Boat angle A, B	7.7 (1)	27.6 (5)	4.9 (3)	14.8 (3)
Boat angle A, C	$4 \cdot 3$ (1)	19.1 (4)	2.7 (3)	8.0 (3)
Fold angle	8.2 (1)	30.7 (5)	5.1 (4)	14.8 (4)

A is the mean plane of $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5$ and $\mathrm{C} 6, B$ is the plane of C 3 , C 4 and C 5 , and C is the plane of $\mathrm{C} 2, \mathrm{O}$ and C 6 .

In all four structures the pyran ring has a boat conformation with the apexes $\mathrm{C}\left(s p^{3}\right)$ and O , and in which the torsion angles around $\mathrm{C}\left(s p^{3}\right)$ ring bonds are wider than those around O ring bonds. Fig. 2 shows a plot of the average torsion angle at the O
against that the $\mathrm{C}\left(s p^{3}\right)$ atom; (II) has the largest differences. A correlation between the ring distortion of both apexes in the similar case of dihydropyridines is discussed by Fossheim, Svarteng, Mostad, Rømming, Shefter \& Triggle (1982). The greatest difference between the bond angles at $\mathrm{C}\left(s p^{3}\right)$ and their ideal value is also found in the case of (II). A comparison of dihedral angles between the planes A, B and A, C (boat angles, see Table 3) and dihedral angles between both $\mathrm{O}-\mathrm{C}\left(s p^{2}\right)=\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$ planes (fold angles) shows that the ring distorsions of (II) and (IV) are considerably higher than those of (I) and (III). However, the planarity of the doublebond system is almost retained; the deviations of four $\mathrm{C}\left(s p^{2}\right)$ atoms from the respective mean plane A are less than $0.006 \AA$ for all structures. The doublebond length C2-C3 of (IV) is elongated by the effect described by Sharanina et al. (1986).
The mean phenyl planes of 2,4,4,6-tetraphenyl- 4 H pyran form dihedral angles $3 \cdot 2,71 \cdot 8,75 \cdot 2$ and $3.0(1)^{\circ}$ for the pivot atoms C61, C411, C421 and C21, respectively, with plane A (the corresponding χ^{2} values for ring planarity range from 8 to 21). The bonds $\mathrm{C} 6-\mathrm{C} 61, \mathrm{C} 4-\mathrm{C} 411, \mathrm{C} 4-\mathrm{C} 421$ and $\mathrm{C} 2-\mathrm{C} 21$ form angles $3 \cdot 0,62 \cdot 9,48 \cdot 0$ and $1 \cdot 1(1)^{\circ}$, respectively, with plane A. Asymmetry in the positioning of phenyls at $\mathrm{C}\left(s p^{3}\right)$ is similar to the case of 1-methyl-2,4,4,6-tetraphenyl-1,4-dihydropyridine (Hašek \& Ondráček, 1990). This follows from a comparison of the angles C3-C4-C421, 111.3 (2),

Fig. 2. A plot of the $4 H$-pyran ring distortion of O against that at $\mathrm{C}\left(s p^{2}\right)\left[\tau_{\mathrm{O}}\right.$ is the average torsion angle $\mid \mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)-$ $\mathrm{O}-\mathrm{C}\left(s p^{2}\right) \mid, \tau_{\mathrm{c}}$ is the average torsion angle $\mid \mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)-$ $\left.\mathrm{C}\left(s p^{3}\right)-\mathrm{C}\left(s p^{2}\right)\right]$.

Fig. 3. Stereoscopic view of the unit cell (the H atoms have been omitted for clarity).

C5-C4-C411, $112 \cdot 1$ (2) ${ }^{\circ}$ with $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 411$, $107 \cdot 3$ (2), C5-C4-C421, $107 \cdot 5$ (2).

Fig. 3 shows a stereoscopic view of the unit cell. There are no significant contacts shorter than $3.4 \AA$. No tendency for parallel stacking of the phenyl rings of symmetry-related molecules was observed.

The authors thank Dr S. Nešpůrek, Dr K. Huml and Ing J. Ječný for valuable discussions.

References

allen, F. h., Bellard, S., Brice, M. D., Cartwright, G. A., doubleday, A., Higgs, H., Hummelink, T., HummelinkPeters, b. J., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.

Debaerdemaeker, t., Germain, G., Main, P., Tate, C. \& Woolrson, M. M. (1987). MULTAN87. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Declercq, J.-P., Germain, G., van Meerssche, M., Greenhill, J. V., Chaaban, I. \& de Kimpe, N. (1981). Cryst. Struct. Commun. 10, 1335-1341.
Florencio, F. \& Garcia-Blanco, S. (1987). Acta Cryst. C43, 1430-1432.
Fossheim, R., Svarteng, K., Mostad, A., Rømming, C. H., Shefter, E. \& Triggle, D. J. (1982). J. Med. Chem. 25, 126-131.
Hasek, J. \& Ondráček, J. (1990). Acta Cryst. C46, 1256-1259.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributer Kluwer Academic Publishers, Dordrecht.)
Iwasaki, F., Watanabe, T. \& Maeda, K. (1987). Bull. Chem. Soc. Jpn, 60, 1255-1259.
Nardelli, M. (1983). PARST. A System of Computer Routines for Calculating Molecular Parameters from the Results of Crystal Structure Analysis. Univ. of Parma, Italy.
Sharanina, G., Nesterov, V. N., Klokol, G. V., Rodinovskaya, l. A., Shklover, V. E., Sharanin, Yu. A., Struchkov, Yu. T. \& Promonenkov, V. K. (1986). Zh. Org. Khim. 22, 1315-1322.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1990). C46, 1730-1732

Structure of a Nucleoside Analogue, $\mathbf{3}^{\prime}$-Deoxy- $\mathbf{3}^{\prime}$-fluorothymidine*

By D. H. Everaert, O. M. Peeters, N. M. Blaton and C. J. De Ranter \dagger
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Instituut voor Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

(Received 25 September 1989; accepted 16 January 1990)

Abstract

Dideoxy-3-fluoro- β-D-erythro-pentofuranosyl)thymine, $\quad \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{4}, \quad M_{r}=244 \cdot 22$, monoclinic, $P 2_{1}, a=6.408$ (14), $b=18.716$ (26), $c=$ 9.329 (7) $\AA, \quad \beta=98.4$ (1) ${ }^{\circ}, \quad V=1107$ (3) $\AA^{3}, \quad Z=4$, $D_{m}=1.46, \quad D_{x}=1.465 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ graphitemonochromated Mo K α radiation, $\lambda=0.71073 \AA, \mu$ $=0.1169 \mathrm{~mm}^{-1}, F(000)=512, T=298 \mathrm{~K}$, final $R=$ 0.035 for 1425 unique observed reflections. The asymmetric unit contains two molecules (A and B). For molecule A : the N-glycosidic torsion angle χ has a value of $-138.4(5)^{\circ}$ in the anti range; the sugar pucker is ${ }^{2} E$ with $P=164(1)^{\circ}$ and $\psi_{m}=36(1)^{\circ}$ and the $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$ conformation is $+s c$ with $\gamma=$ 50.2 (7) ${ }^{\circ}$. For molecule B : the N-glycosidic torsion angle χ has a value of $-159.6(5)^{\circ}$ in the anti range; the sugar pucker is ${ }^{2} T_{3}$ with $P=169(1)^{\circ}$ and $\psi_{m}=$ 32 (1) ${ }^{\circ}$ and the $\mathrm{C} 4^{\prime}-\mathrm{C}^{\prime}$ conformation is $+s c \cdot$ with $\gamma=52 \cdot 8(7)^{\circ}$. The conformational parameters are in

[^1]0108-2701/90/091730-03803.00
accordance with the IUPAC-IUB Joint Commission on Biochemical Nomenclature [Pure Appl. Chem. (1983), 55, 1273-1280] guidelines. Base-pair formation occurs between the two molecules A and B.

Introduction. This structure was determined as part of an investigation of potentially antiviral nucleoside analogues, with particular reference to possible antiAIDS compounds.

Experimental. Colourless prismatic crystals obtained at room temperature from a methanol-ether solution, dimensions $\sim 0.6 \times 0.3 \times 0.2 \mathrm{~mm}$. Density measured by flotation in n-heptane $/ \mathrm{CCl}_{4}$. Stadi-4 computer-controlled four-circle diffractometer, graphite-monochromated Mo $K \alpha$ radiation, $\omega / 2 \theta$ scan technique ($2 \theta_{\text {max }}=50^{\circ},-8 \leq h \leq 0,-22 \leq k \leq$ $22,-11 \leq l \leq 11)$. Cell dimensions by least-squares refinement of the setting angles of 24 reflections with $17<2 \theta<25^{\circ}$, space group $P 2_{1}$ from systematic absences $0 k 0$ for k odd. Four standard reflections ($\overline{1} 0 \overline{3}, \overline{1} 02, \overline{2} 51,03 \overline{2}$) monitored every 120 min showed no significant decrease in intensity per hour, 4288 © 1990 International Union of Crystallography

[^0]: * Lists of refined parameters for H atoms, anisotropic temperature parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52930 (20 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Structural Studies of Modified Nucleosides. Part II. Part I: Van Aerschot, Everaert, Peeters, Blaton, De Ranter \& Herdewijn (1990).
 \dagger To whom correspondence should be addressed.

